
CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Assignment III:
Graphing Calculator
Objective

You will enhance your Calculator to create a graph of the “program” the user has
entered which can be zoomed in on and panned around. Your app will now work not
only on iPhones, but on iPads as well.

Materials
• You will need to have successfully completed Assignment 2. This assignment builds on

that. You can try to modify your existing program or create a new project (and reuse
the classes you wrote by dragging them into the new project). In any case, be sure to
save a copy of last week’s work before you start.

• This AxesDrawer class will likely be very useful!

PAGE OF ASSIGNMENT III: GRAPHING CALCULATOR1 8

http://cs193p.stanford.edu/AxesDrawer.swift.zip

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Required Tasks
1. You must begin this assignment with your Assignment 2 code, not with any in-class

demo code that has been posted. Learning to create new MVCs and segues requires
experiencing it, not copy/pasting it or editing an existing storyboard that already has
segues in it.

2. Rename the ViewController class you’ve been working on in Assignments 1 and 2 to
be CalculatorViewController.

3. Add a new button to your calculator’s user-interface which segues to a new MVC
which graphs the program that is in the CalculatorBrain at the time the button was
touched using the memory location M as the independent variable. For example, if the
CalculatorBrain contains sin(M), you’d draw a sine wave. Subsequent input to the
Calculator must have no effect on the graphing MVC (until the graphing button is
touched again). Ignore user attempts to graph if isPartialResult is true at the time.

4. Neither of your MVCs in this assignment is allowed to have CalculatorBrain appear
anywhere in its non-private API (the I in API stands for interface, not implementation).

5. On iPad and in landscape on iPhone 6+ devices, the graph must be (or be able to be)
on screen at the same time as your existing Calculator’s user-interface (i.e. in a split
view). On other iPhones the graph should “push” onto the screen via a navigation
controller.

6. Anytime a graph is on screen, a description of what it is being drawn should also be
shown on screen somewhere sensible, e.g., if sin(M) is what is being graphed, then the
string “sin(M)” should be on screen somewhere.

7. As part of your implementation, you are required to write a generic x vs. y graphing
UIView. In other words, the UIView that does the graphing should be designed in such
a way that it is independent of the Calculator (and could be reused in some other
completely different application that wanted to draw an x vs. y graph).

8. The graphing view must not own (i.e. store) the data it is graphing, even temporarily.
It must ask for the data as it needs it. Your graphing view graphs an x vs. y function, it
does not graph an array of points, so don’t pass it an array of points.

9. Your graphing calculator should do something sensible when graphing discontinuous
functions (for example. it should only try to draw lines to or from points whose y
value .isNormal or .isZero). To make things simpler on this front, it’s okay if your
graphing view improperly graphs a function that rapidly goes through a huge swing in
value across a single pixel by drawing an almost vertical line between those two points
even if the function is actually probably discontinuous there (e.g. tan(x)). It would be
cool to try to detect this case within some tolerance, though, and not draw that vertical
line (up to you).

PAGE OF ASSIGNMENT III: GRAPHING CALCULATOR2 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

10. Your graphing view must be @IBDesignable and its scale must be @IBInspectable.
The graphing view’s axes should appear in the storyboard at the inspected scale.

11. Your graphing view must support the following three gestures:
a. Pinching (zooms the entire graph, including the axes, in or out on the graph)
b. Panning (moves the entire graph, including the axes, to follow the touch around)
c. Double-tapping (moves the origin of the graph to the point of the double tap) 

PAGE OF ASSIGNMENT III: GRAPHING CALCULATOR3 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Hints
1. Forgetting to set the class of a UIViewController or a custom UIView in the Identity

Inspector in Xcode is a common error. You’ll need to do this when you rename
ViewController to CalculatorViewController and for both the new
UIViewController and the new UIView that you are creating in this assignment.

2. To make the drawing of the graph much easier, a class which can draw a graph’s axes
in the current drawing context is provided (AxesDrawer). Notice that this class’s
drawing method (drawAxesInRect) takes the bounds to draw in and two other
arguments: origin and pointsPerUnit (this is essentially the “scale” of the graph).
You will very likely want to mimic this (i.e. having vars for origin and scale) in your
generic graphing view.

3. Your CalculatorBrain should not need to be touched for this assignment.

4. Here’s a suggested order of attack … Get your existing CalculatorViewController
working inside a split view controller and navigation controller structure with a graph
button that segues to a new, blank MVC (at first) with an appropriate
UIViewController subclass. Add your generic graphing view to this new MVC. Get
the graphing view at least drawing the axes. Add gestures. Finally, get your new
MVC to graph the program that is in your main MVC at the time the graph button is
touched. You don’t have to do it in this order by any means, but it might help you
organize your work.

5. When your existing CalculatorViewController is embedded in a
UINavigationController, the frames of all the buttons may not show correctly in the
storyboard (and Xcode will complain with build warnings). It will be fine when you
run. Sometimes restarting Xcode will clear these warnings. If not, then try using the
button in the lower right corner of your storyboard: with the calculator scene selected,
choose Update Frames under All Views in Calculator View Controller. It should
move the buttons to where they should be according to your stack views and your “pin
to the edges” layout constraints. If not, and if restarting Xcode doesn’t fix it, ignore
these warnings.

6. When you put your graphing view into your new MVC, you can use Reset to
Suggested Constraints in that same menu to set its “pin to the edges” constraints as
long as you have used the dashed blue lines to put your graphing view in the right spot
in your new MVC’s scene. If you mess up doing any of these constraints operations,
remember that Xcode has undo.

7. The UIViewController subclass for your new MVC (the one that graphs what is in the
Calculator) and the generic graphing UIView subclass are the only new classes you
should have to write from scratch for this assignment. If you think you need to be
writing other classes, you might be overdoing it.

PAGE OF ASSIGNMENT III: GRAPHING CALCULATOR4 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

8. As we’ve learned, a function is a first-class-citizen type in Swift. Thus, it is perfectly
legal to have an Optional function if you want.

9. Make sure you think clearly about what your new MVC’s Model should be.
10. Don’t freak out when you drag out a Split View Controller and it brings along all

kinds of other view controllers along with it. It’s just Xcode trying to be helpful. You
can safely delete those and use ctrl-drag to wire up your MVC’s (inside navigation
controllers) in their places.

11. It’d be nice for the origin of your graph to default to the center of the UIView. But be
careful where/when you calculate this because your UIView’s bounds are not set until it
is laid out for the device it is on. You can be certain your bounds are set in your
drawRect of course, but be careful not to re-set the origin if it’s already been set by
someone.

12. A good place for your new MVC to set itself up to work with your generic graphing
view is using a property observer on its outlet property to the graphing view.

13. Don’t overcomplicate your drawRect. Simply iterate over every pixel (not point) across
the width of your view and draw a line to (or just “move to” if the last datapoint was
not valid) the next datapoint you get (if it is valid).

14. The coordinate system you are drawing in inside your drawRect is not the same as the
coordinates your data is in (because, for example, your drawing coordinates have the
origin in the upper left, but the data’s origin is probably somewhere else in the view;
not to mention scalability). Be clear in your mind as you write your code which of
these two coordinate systems a var or an argument to a function is (and should be) in.

15. The AxesDrawer knows how to draw on pixel (not point) boundaries (like your
drawRect should), but only if you tell it the contentScaleFactor of the drawing
context you are drawing into.

16. Don’t forget to use property observing (didSet) to cause your view to note that it needs
to redisplay itself when a property that affects how it looks gets changed.

17. Make sure you set your UIViewContentMode properly (this can be done in the
storyboard).

18. Your gestures will probably be handled by the graphing view, but will probably want to
be “turned on” by your Controller. For this reason, the methods that handle the
gestures shouldn’t be private in your graphing view.

19. Remember that when specifying the action that is going to handle a gesture as part of
creating a gesture recognizer, if that handler takes an argument it must properly be
specified as such.

20. This assignment will probably require a bit more code than your first two assignments
did, but it still can be done in well under 100 lines of code.  

PAGE OF ASSIGNMENT III: GRAPHING CALCULATOR5 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Things to Learn
Here is a partial list of concepts this assignment is intended to let you gain practice with
or otherwise demonstrate your knowledge of.

1. Understanding MVC boundaries
2. Creating a new subclass of UIViewController
3. Universal Application (i.e. different UIs on iPad and iPhone in the same application)
4. Split View Controller
5. Navigation Controller
6. Segues
7. Property List
8. Subclassing UIView
9. UIViewContentMode.Redraw

10. Drawing with UIBezierPath and/or Core Graphics
11. CGFloat/CGPoint/CGSize/CGRect
12. Gestures
13. contentScaleFactor (pixels vs. points)

PAGE OF ASSIGNMENT III: GRAPHING CALCULATOR6 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Evaluation
In all of the assignments this quarter, writing quality code that builds without warnings
or errors, and then testing the resulting application and iterating until it functions
properly is the goal.
Here are the most common reasons assignments are marked down:

• Project does not build.

• Project does not build without warnings.

• One or more items in the Required Tasks section was not satisfied.

• A fundamental concept was not understood.

• Code is visually sloppy and hard to read (e.g. indentation is not consistent, etc.).

• Your solution is difficult (or impossible) for someone reading the code to
understand due to lack of comments, poor variable/method names, poor solution
structure, long methods, etc.

• UI is a mess. Things should be lined up and appropriately spaced to “look nice.”

• Public and private API is not properly delineated.
Often students ask “how much commenting of my code do I need to do?” The answer
is that your code must be easily and completely understandable by anyone reading it.
You can assume that the reader knows the SDK, but should not assume that they
already know the (or a) solution to the problem.

PAGE OF ASSIGNMENT III: GRAPHING CALCULATOR7 8

CS193P IOS APPLICATION DEVELOPMENT SPRING 2016

Extra Credit
We try to make Extra Credit be opportunities to expand on what you’ve learned this
week. Attempting at least some of these each week is highly recommended to get the
most out of this course.

1. Have your graphing button in your main Calculator scene reflect whether or not it is
currently possible to graph what has been entered so far (i.e. whether there is a partial
result or not). You could just disable it, but maybe a different graphic or something?
This is a very easy task, so don’t expect a lot of extra credit for it!

2. Preserve origin and scale between launchings of the application. Where should this
be done to best respect MVC, do you think? There’s no “right answer” to this one.
It’s subtle.

3. Upon rotation (or any bounds change), maintain the origin of your graph with respect
to the center of your graphing view rather than with respect to the upper left corner.

4. Figure out how to use Instruments to analyze the performance of panning and
pinching in your graphing view. What makes dragging the graph around so sluggish?
Explain in comments in your code what you found and what you might do about it.

5. Use the information you found above to improve panning performance. Do NOT
turn your code into a mess to do this. Your solution should be simple and elegant.
There is a strong temptation when optimizing to sacrifice readability or to violate
MVC boundaries, but you are NOT allowed to do that for this Extra Credit!

6. When your application first launches, have it show the last graph it was showing
(rather than coming up blank). You could reset the Calculator upon relaunch to the
last state it was in as well (which may or may not be the same thing as what the graph
was showing). Be careful not to violate MVC in your solution, though (each MVC its
its own independent world).

PAGE OF ASSIGNMENT III: GRAPHING CALCULATOR8 8

